
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





 





 







Stochastic Analysis of an M/G/1 Retrial Queue

with FCFS

Mohamed Boualem, Mouloud Cherfaoui, Natalia Djellab, and Djamil Aïssani

Abstract The main goal of this paper is to investigate stochastic analysis of a

single server retrial queue with a First-Come-First-Served (FCFS) orbit and non-

exponential retrial times using the monotonicity and comparability methods. We

establish various results for the comparison and monotonicity of the underlying

embedded Markov chain when the parameters vary. Moreover, we prove stochastic

inequalities for the stationary distribution and some simple bounds for the mean

characteristics of the system. We validate stochastic comparison method by present-

ing some numerical results illustrating the interest of the approach.

1 Introduction

Queueing systems with repeated attempts have been widely used to model many

problems in telecommunication and computer systems [1, 4, 19]. The essential

feature of a retrial queue is that arriving customers who find all servers busy are

obliged to abandon the service area and join a retrial group, called orbit, in order to

try their luck again after some random time. For a detailed review of the main results
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and the literature on this topic the reader is referred to the monographs [2, 11]. In

recent years, there has been an increasing interest in the investigation of the retrial

phenomenon in cellular mobile network, see [3, 10, 15, 16, 24] and the references

therein, and in many other telecommunication systems including star-like local area

networks [14], wavelength-routed optical networks [26], circuit-switched systems

with hybrid fiber-coax architecture [13], wireless sensor networks [25], etc.

It is well known that for the retrial queues we need to establish how the customers

in orbit access to the server. The time between successive repeated attempts is

important in telephony, where a call receiving a busy signal does not wait the

termination of the busy condition. The most usual protocol described in the classical

theory of retrial queues is the so-called classical retrial policy in which each source

in orbit repeats its call after an exponentially distributed time with parameter � . So,

there is a probability n�dt C o.dt/ of a new retrial in the next interval .t; t C dt/

given that n customers are in orbit at time t. Such a policy has been motivated

by applications in modeling subscriber’s behavior in telephone networks since

the 1940s. In past years, technology has considerably evolved. The literature on

retrial queues describes several retrial protocols specific to some modern computer

and communication networks in which the time between two successive repeated

attempts is controlled by an electronic device and consequently, is independent of

the number of units applying for service. In this case, the probability of a repeated

attempt during .t; tCdt/, given the orbit is not empty, is .1�ı0;n/˛ dtCo.dt/where

ı0;n denotes Kronecker’s delta and n is the number of repeated customers. This type

of retrial discipline is called the constant retrial policy.

An examination of the literature on the retrial queues reveals the remarkable fact

that the non-homogeneity caused by the flow of repeated attempts is the key to

understand most analytical difficulties arising in the study of retrial queues. Many

efforts have been devoted to deriving performance measures such as queue length,

waiting time, busy period distributions, and so on. However, these performance

characteristics have been provided through transform methods which have made

the expressions cumbersome and the obtained results cannot be put into practice. In

the last decade there has been a trend towards the research of approximations and

bounds. Qualitative properties of stochastic models constitute a basic theoretical

basis for approximation methods. Some important approaches are monotonicity and

comparability which can be investigated using the stochastic comparison method

based on the general theory of stochastic orderings. Stochastic orders represent an

important tool for many problems in probability and statistics [18, 20–23].

Stochastic comparison is a mathematical tool used in the performance study

of systems modeled by continuous or discrete-time Markov chains. The general

idea of this method is to bound a complex system by a new system, easier to

solve and providing performance measures bounds. Many papers treat stochastic

comparison methods of queueing systems with repeated attempts. Boualem et al.

[6] investigate some monotonicity properties of an M=G=1 queue with constant

retrial policy in which the server operates under a general exhaustive service and

multiple vacation policy relative to strong stochastic ordering and convex ordering.

These results imply in particular simple insensitive bounds for the stationary
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queue length distribution. Boualem et al. [7] use the tools of a qualitative analysis

to investigate various monotonicity properties for an M=G=1 retrial queue with

classical retrial policy and Bernoulli feedback. The obtained results allow to place in

a prominent position the insensitive bounds for both the stationary distribution and

the conditional distribution of the stationary queue of the considered model. Mokdad

and Castel-Taleb [17] propose to use a mathematical method based on stochastic

comparisons of Markov chains in order to derive bounds on performance indices

of fixed and mobile networks. Their main objective consists in finding Markovian

bounding models with reduced state spaces, which are easier to solve. They apply

the methodology to performance evaluation of complex telecommunication systems

modeled by large size Markov chains which cannot be solved by exact methods.

They propose to define intuitively bounding systems in order to compute bounds

on performance measures. Using stochastic comparison methods, they prove that

the new systems represent bounds for the exact ones. To validate their approach

and illustrate its interest, they present some numerical results. Bušić and Fourneau

[9] illustrate through examples how monotonicity may help for performance

evaluation of mobile networks, by considering two different applications. In the

first application, they assume that a Markov chain of the model depends on a

parameter that can be estimated only up to a certain level and they have only

an interval that contains the exact value of the parameter. Instead of taking an

approximated value for the unknown parameter, they show how monotonicity

properties of the Markov chain can be used to take into account the error bound

from the measurements. In the second application, they consider a well-known

approximation method: the decomposition into Markovian submodels. They show

that the monotonicity property may help to derive bounds for Markovian submodels

and are sufficient conditions for convergence of iterative algorithms which are often

designed to give approximations. More recently, Boualem et al. [8] investigate

various monotonicity properties of a single server retrial queue with general retrial

times using the mathematical method based on stochastic comparisons of Markov

chains in order to derive bounds on performance indices. Bounds are derived for the

mean characteristics of the busy period, number of customers served during a busy

period, number of orbit busy periods, and waiting times. Boualem [5] addresses

monotonicity properties of the single server retrial queue with no waiting room and

server subject to active breakdowns, that is, the service station can fail only during

the service period. The obtained results give insensitive bounds for the stationary

distribution of the considered embedded Markov chain related to the model in the

study. Numerical illustrations are provided to support the results.

In this paper we consider an M=G=1 retrial queue with non-exponential retrial

times under the special assumption that only the customer at the head of the orbit

queue is allowed to occupy the server. The performance characteristics of such

a system are available in the literature (see [12]). The author obtains relevant

performance characteristics expressed in terms of generating functions and Laplace

transforms. However, there still remains the issue that numerical inversion is

required for actually computing numbers and derive useable results. Indeed, it is

sometimes possible to obtain the generating function and/or Laplace transforms of
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an unknown probability distribution but not to invert the generating function or the

Laplace transforms to obtain an explicit form of the distribution. Moreover, the

error for numerical inversion is difficult to control. For example, if we compare

two systems which are “close” then it might be that due to the numerical error

in the inversion, we may take the wrong system to perform better. Based on the

relevant performance characteristics obtained by Gómez-Corral [12], we consider

in our paper a qualitative analysis which is another field of own right to establish

insensitive bounds on some performance measures by using the stochastic analysis

approach relative to the theory of stochastic orderings . Finally, the effects of various

parameters on the performance of the system have been examined numerically.

This paper is arranged as follows. In the next section, we describe the considered

mathematical model. In Sect. 3, we introduce some pertinent definitions and notions

of the three most important orderings. Section 4 focusses on monotonicity of the

transition operator and gives comparability conditions of two transition operators.

Stochastic inequalities for the stationary number of customers in the system are

discussed in Sect. 5. The last section is devoted to the practical applications.

2 Mathematical Model

Primary customers arrive in a Poisson process with rate �. If the server is free,

the primary customer is served immediately and leaves the system after service

completion. Otherwise, the customer leaves the service area and enters the retrial

group in accordance with an FCFS discipline. We assume that only the customer

at the head of the orbit is allowed for access to the server. If the server is busy

upon retrial, the customer joins the orbit again. Such a process is repeated until the

customer finds the server idle and gets the requested service at the time of a retrial.

Successive inter-retrial times of any customer follow an arbitrary law with common

probability distribution function A.x/, Laplace-Stieltjes transform LA.s/ and first

moment ˛1. The service times are independently and identically distributed with

probability distribution function B.x/, Laplace-Stieltjes transform LB.s/ and first

two moments ˇ1, ˇ2. We suppose that inter-arrival times, retrial times, and service

times are mutually independent.

The main characteristic of this queue is that, at any service completion, a

competition between an exponential law and a general retrial time distribution

determines the next customer who accesses the service facility. Thus, the retrial

discipline does not depend on the orbit length.

Let �n be the time of the n-th departure and Zn the number of customers in the

orbit just after the time �n. We have the following fundamental recursive equation:

ZnC1 D Zn C vnC1 � ıZnC1
;
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where vnC1 is the number of primary customers arriving at the system during the

service time which ends at �nC1. Its distribution is given by:

bj D P.vnC1 D j/ D

Z 1

0

.�x/j. jŠ/�1e��xdB.x/; j � 0;

with generating function b.z/ D
P

j�0

bjz
j D LB.�.1 � z//.

The Bernoulli random variable ıZnC1
is equal to 1 or 0 depending on whether the

customer who leaves the system at time �nC1 proceeds from the orbit or otherwise.

The sequence of random variables fZn; n � 1g forms an embedded Markov chain

for our queueing system which is irreducible and aperiodic on the state-space N. The

stability condition is given in [12] as follows: � < LA.�/, where � D �ˇ1 is the load

of the system.

3 Stochastic Orders

Stochastic orders are useful in comparing random variables measuring certain

characteristics in many areas. Such areas include insurance, operations research,

queueing theory, survival analysis, and reliability theory (see [22]). The simplest

comparison is through comparing the expected value of the two comparable random

variables. First, we define some notions on stochastic ordering which will be used

in the context of the paper. For more details see [20–23].

Definition 1 Let F.x/ and G.x/ be two distribution functions of nonnegative

random variables X and Y, respectively. Then:

(a) F �st G iff F.x/ � G.x/ or F.x/ D 1 � F.x/ � G.x/, 8x � 0.

(b) F �icx G iff
C1
R

x

F.u/d.u/ �
C1
R

x

G.u/d.u/, 8x � 0.

(c) F �L G iff
C1
R

0

exp.�sx/dF.x/ �
C1
R

0

exp.�sx/dG.x/, 8s � 0.

Definition 2 If the random variables of interest are of discrete type and ˛ D

.˛n/n�0, ˇ D .ˇn/n�0 are the corresponding distributions, then the above definitions

can be given in the following form:

(a) ˛ �st ˇ iff ˛m D
P

n�m

˛n � ˇm D
P

n�m

ˇn, for all m.

(b) ˛ �icx ˇ iff ˛m D
P

n�m

P

k�n

˛k � ˇm D
P

n�m

P

k�n

ˇk, for all m.

(c) ˛ �L ˇ iff
P

n�0

˛nzn �
P

n�0

ˇnzn, for all z 2 Œ0; 1�.
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Definition 3 Let X be a positive random variable with distribution function F:

1. F is HNBUE (Harmonically New Better than Used in Expectation) iff F �icx F�,

2. F is of class L iff F �L F�,

where F� is the exponential distribution function with the same mean as F.

The ageing classes are linked by the inclusion chain:

NBU (New Better than Used) � NBUE (New Better than Used in Expectation)

� HNBUE � L :

4 Monotonicity and Comparability of the Transition

Operator

The one-step transition probabilities of fZn; n � 1g are defined by

pnm D

�

.1 � LA.�//bm�n C LA.�/bm�nC1; for n ¤ 0 and m � 0;

bm; for n D 0 and m � 0:
(1)

Let � be the transition operator of an embedded Markov chain which associates

to every distribution ˛ D f˛mgm�0 a distribution �˛ D fˇmgm�0 such that

ˇm D
X

n�0

˛npnm:

Theorem 1 The operator � is monotone with respect to the orders �st and �icx.

Proof The operator � is monotone with respect to �st if and only if pn�1m �

pnm, and is monotone with respect to �icx if and only if 2pnm � pn�1m C

pnC1m for all n; m, where

pnm D
P

l�m

pnl and pnm D
P

k�m

pnk D
P

k�m

P

l�k

pnl:

In our case:

pnm � pn�1m D .1 � LA.�//bm�n C LA.�/bm�nC1 > 0:

pn�1m C pnC1m � 2pnm D .1 � LA.�//bm�n�1 C LA.�/bm�n > 0:

ut

Theorems 2 till 4, we give comparability conditions of two transition operators.

Consider two M=G=1 retrial queues with non-exponential retrial times with param-

eters �.i/, A.i/, B.i/. Let �i be the transition operator of the embedded Markov chain,

in the i-th system, i D 1; 2.
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Theorem 2 If �.1/ � �.2/, B.1/ �st B.2/ and A.1/ �L A.2/, then �1 �st �
2, i.e., for

any distribution ˛, we have �1˛ �st �
2˛.

Proof From Stoyan [23], it is well known that to prove�1 �st �
2, we have to show

the following inequality:

p.1/nm � p.2/nm; 8 n;m:

We have

p.1/nm D .1 � LA.1/.�
.1///b.1/m�n C b

.1/

m�nC1:

Since �.1/ � �.2/ and A.1/ �L A.2/, then

LA.1/.�
.1// � LA.2/.�

.2//;

and

p.1/nm � .1 � LA.2/.�
.2///b.1/m�n C b

.1/

m�nC1:

But

.1 � LA.2/.�
.2///b.1/m�n C b

.1/

m�nC1 D .1 � LA.2/.�
.2///b

.1/

m�n C LA.2/.�
.2//b

.1/

m�nC1:

Using these inequalities we get:

p.1/nm � .1 � LA.2/.�
.2///b

.2/

m�n C LA.2/.�
.2//b

.2/

m�nC1 D p.2/nm:

ut

Theorem 3 If �.1/ � �.2/, B.1/ �icx B.2/ and A.1/ �L A.2/, then �1 �icx �
2.

Proof The proof is similar to that of Theorem 2. ut

Theorem 4 If �.1/ � �.2/, B.1/ �L B.2/ and A.1/ �L A.2/, then �1 �L �
2:

Proof Let ˛ be a distribution and �˛ D ˇ, where

ˇm D
X

n�0

˛npnm D ˛0bm C
X

n�1

˛npnm; for all m � 0:

The generating function of ˇ is given by

G.z/ D
X

m�0

ˇmzm D ˛0b.z/ C
1

z
b.z/.˛.z/ � ˛0/.z C .1 � z/LA.�//:
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If the conditions of Theorem 4 are fulfilled, then

b.1/.z/ � b.2/.z/ and .1 � z/LA.1/.�
.1// � .1 � z/LA.2/.�

.2//; 8 z 2 Œ0; 1�:

Hence G.1/.z/ � G.2/.z/. ut

5 Stochastic Inequalities for the Stationary Distribution

Consider two M=G=1 retrial queues with non-exponential retrial times. Let �
.1/
n ,

�
.2/
n be the corresponding stationary distributions of the number of customers in the

system.

Theorem 5 If �.1/ � �.2/, B.1/ �s B.2/ and A.1/ �L A.2/, then f�
.1/
n g �s f�

.2/
n g,

where �s represents one of the symbols �st or �icx.

Proof Using Theorems 1–3 which state that �i are monotone with respect to the

order �s and �1 �s �
2, we have by induction �1;n˛ �s �

2;n˛ for any distribution

˛, where �i;n D �i.�i;n�1˛/. Taking the limit, we obtain the stated result. Indeed,

�1˛1n D PŒZ1k D n� �s PŒZ2k D n� D �2˛2n , when k ! 1, we have f�
.1/
n g �s

f�
.2/
n g. ut

Theorem 6 If in the M=G=1 retrial queue with general retrial times the service time

distribution B.x/ is HNBUE (Harmonically New Better than Used in Expectation)

and the retrial time distribution is L , then f�ng �icx f��
n g, where f��

n g is the

stationary distribution of the number of customers in the M=M=1 retrial queue with

exponential retrial with the same parameters.

Proof Consider an auxiliary M=M=1 retrial queue with exponentially distributed

retrial time A�.x/ and service time B�.x/. If B.x/ is HNBUE and A.x/ is L , then

B.x/ �icx B�.x/ and A.x/ �L A�.x/. Therefore, by using Theorem 5, we deduce the

statement of this theorem. ut

6 Practical Aspect

Assume that we have two M=G=1 retrial queues with non-exponential retrial times

with parameters �.1/, A.1/, B.1/ and �.2/, A.2/, B.2/, respectively. Let L.i/, I.i/, N
.i/
b

and W.i/ be the busy period length, the number of customers served during a busy

period, the number of orbit busy periods which take place in �0;L.i/� and the waiting

time , respectively, in the i-th system, i D 1; 2:

Theorem 7 If �.1/ � �.2/, B.1/ �s B.2/ and A.1/ �L A.2/, then E.L.1// � E.L.2//

and E.I.1// � E.I.2//; where �s is one of the symbols �st, �icx, �L.
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Proof Gómez-Corral [12] shows that

E.L/ D
ˇ1

LA.�/ � �ˇ1
and E.I/ D

LA.�/

LA.�/ � �ˇ1
;

which are increasing with respect to � and ˇ1, decreasing with respect to LA.:/.

Under conditions of Theorem 7, we obtain the desired inequalities. ut

Theorem 8 For any M=G=1 retrial queue,

E.L/ � E.L/Upper D
ˇ1

e��˛1 � �ˇ1
;

E.I/ � E.I/Upper D
e��˛1

e��˛1 � �ˇ1
:

If A and B are of class L , then

E.L/ � E.L/Lower D
ˇ1.1C �˛1/

1 � �ˇ1.1C �˛1/
;

E.I/ � E.I/Lower D
1

1 � �ˇ1.1C �˛1/
:

Proof We consider auxiliary M=D=1 and M=M=1 retrial queues with the same

arrival rates �, mean service times ˇ1 and mean retrial times ˛1. A represents Dirac

distribution at ˛1 for the M=D=1 system, and represents the exponential distribution

for the M=M=1 system. Using the theorem above we obtain the stated results. ut

Theorem 9 If �.1/ � �.2/, B.1/ �st B.2/ and A.1/ �L A.2/, then E.N
.1/
b / � E.N

.2/
b /

and E.W.1// � E.W.2//.

Proof Gómez-Corral [12] shows that

E.Nb/ D
1 � LB.�/

LB.�/
and E.W/ D

�ˇ2 C 2ˇ1.1 � LA.�//

2.LA.�/� �ˇ1/
:

These quantities are increasing with respect to �, ˇ1 and ˇ2, decreasing with respect

to LB.:/ and LA.:/. Under the conditions of Theorem 9, we obtain the desired

inequalities. ut

Theorem 10 For any M=G=1 retrial queue,

E.Nb/ � E.Nb/Upper D e�ˇ1 � 1;

E.W/ � E.W/Upper D
�ˇ2 C 2ˇ1.1� e��˛1/

2.e��˛1 � �ˇ1/
:
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If A and B are of class L , then

E.Nb/ � E.Nb/Lower D �ˇ1;

E.W/ � E.W/Lower D
�ˇ2.1C �˛1/ C 2�ˇ1˛1

2.1� �ˇ1.1C �˛1//
:

Proof The proof is similar to that of Theorem 8. ut

6.1 Numerical Application

We give a numerical illustration concerning the mean busy period length E.L/A.x/
and the mean waiting time E.W/A.x/ in the M=M=1 retrial queue with general retrial

times given respectively in Theorems 8 and 10. To this end, for the retrial time

distributions A.x/, we have considered the most representative distributions which

are:

1. Exponential .exp/: A.x/ D 1 � e�˛1x.

2. Two-Stage Erlang (E2): A.x/ D 1 � .1 � 2x/e�2x.

3. Gamma ( ): A.x/ D 1
ba .a/

R x

0
ta�1e�t=bdt.

4. Two-Stage Hyper-Exponential (H2): A.x/ D 1 � pe�1x � .1� p/e�2x.

In Table 1 we present the values of the system parameters according the above

cases.

The obtained results are presented in Figs. 1 and 2. From these results, we note

that:

• The lower bound E.L/Lower (respectively, E.W/Lower) is nothing else than the

mean length of the busy period E.L/ (respectively, the mean waiting time E.W/)

in the M=M=1 retrial queue with exponential retrial times.

• The inequality E.L/A.x/ � E.L/Upper (respectively, E.W/A.x/ � E.W/Upper)

always holds. In addition, if the law A 2 L , then the inequality E.L/Lower �

E.L/A.x/ (respectively, E.W/Lower � E.W/A.x/) holds.

• If ˛1 and � are small enough then the mean length of the busy period (respec-

tively, the mean waiting time) in the system is closer to the E.L/A.x/ (respectively,

E.W/), in other words, closer to the E.L/Lower (respectively, E.W/Lower).

Table 1 Different values of the system parameters

� � ˇ1 ˛1  .a; b/ .p; 1; 2/

0.3 0.3 Œ0:500; 0:400; 0:333; 0:286; 0:250� a D 3:5 p D 0:3

0.6 1 0.6 Œ0:125; 0:143; 0:167; 0:200; 0:250� 2
˛1

1 D 4

0.8 0.8 Œ0:083; 0:091; 0:100; 0:111; 0:125� b D
˛1
3:5

2 D
.1�p/˛11
.1�˛p/
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Fig. 1 Comparison of the E.L/ in M=M=1 queue with general retrial times versus ˛1
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Fig. 2 Comparison of the E.W/ in M=M=1 queue with general retrial times versus ˛1



138 M. Boualem et al.

• If the distribution of the retrial time is close to the exponential distribution in

the Laplace transform, then the exact value E.L/A.x/ (respectively, E.W/A.x/) is

closer to the lower bound E.L/Lower (respectively, E.W/Lower) (see the case of

E.L/E2 and E.W/E2 ).

• Both considered characteristics depend closely on the inter-retrial times distribu-

tion and its first moment ˛1. In addition, this dependence appears clearly in the

case of heavy traffic , i.e., when � ! 1.

7 Conclusion

The main result of this paper consists to give insensitive bounds for the stationary

distribution and some performance measures of the considered embedded Markov

chain by using the theory of stochastic orderings. The result is confirmed by

numerical illustrations.

In conclusion, the monotonicity approach holds promise for the solution of

several systems with repeated attempts. Hence, it is worth noting that our approach

can be further extended to more complex systems.
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